Based on standardized vector and globally normalized weight matrix, Moran's index can be expressed as a simple formula. Further, based on inner product and outer product of the standardized vector, a series of spatial autocorrelation equations can be constructed for Moran's index. However, the theoretical foundations and application direction of these equations are not yet clear. This paper is devoted to exploring the inner and outer product equations of Moran's index. The methods include mathematical derivation and empirical analysis. The results are as follows. First, based on the inner product equation, two spatial autocorrelation models can be constructed. One bears constant terms, and the other bear no constant term. The spatial autocorrelation models can be employed to calculate Moran's index by means of regression analysis. Second, the inner and outer product equations can be used to improve Moran's scatterplot. The normalized Moran's scatterplot can show more geospatial information than the conventional Moran's scatterplot. A conclusion can be reached that the spatial autocorrelation models are useful spatial analysis tools, complementing the uses of spatial autocorrelation coefficient and spatial autoregressive models. These models are helpful for understanding the boundary values of Moran's index and spatial autoregressive modeling process.
翻译:Moran 的指数可以用一个简单的公式来表示。此外,根据标准化矢量的内产物和外产物,可以为 Moran 的指数构建一系列空间自动关系方程式。然而,这些方程式的理论基础和应用方向还不清楚。本文专门探讨Moran 指数的内外产品方程式。这些方法包括数学衍生法和经验分析。结果如下。首先,根据内产方程式,可以建立两个空间自动关系模型。一个带有不变条件,另一个没有固定条件。空间自动关系模型可以用来通过回归分析来计算Moran 的索引。第二,内外产品方程式可以用来改进Moran 的散射点。归正的Moran 散射点可以显示比传统的Moran 散射点更多的地理空间信息。可以得出这样的结论,即空间自动关系模型是有用的空间分析工具,而另一个则没有固定条件。空间自动关系模型可以用回归模型来计算莫伦的指数。第二,可以使用内外部和外产品方程式来改善摩伦的散射点。这些空间自动进度模型是有助于进行空间自我进化的进度和空间进度分析的进度模型。