Embedding-based neural topic models could explicitly represent words and topics by embedding them to a homogeneous feature space, which shows higher interpretability. However, there are no explicit constraints for the training of embeddings, leading to a larger optimization space. Also, a clear description of the changes in embeddings and the impact on model performance is still lacking. In this paper, we propose an embedding regularized neural topic model, which applies the specially designed training constraints on word embedding and topic embedding to reduce the optimization space of parameters. To reveal the changes and roles of embeddings, we introduce \textbf{uniformity} into the embedding-based neural topic model as the evaluation metric of embedding space. On this basis, we describe how embeddings tend to change during training via the changes in the uniformity of embeddings. Furthermore, we demonstrate the impact of changes in embeddings in embedding-based neural topic models through ablation studies. The results of experiments on two mainstream datasets indicate that our model significantly outperforms baseline models in terms of the harmony between topic quality and document modeling. This work is the first attempt to exploit uniformity to explore changes in embeddings of embedding-based neural topic models and their impact on model performance to the best of our knowledge.


翻译:嵌入式神经专题模型可以通过将其嵌入到同一特性空间来明确代表单词和主题,这显示了更高的解释性。然而,对于嵌入式模块的培训没有明确的限制,从而导致更大的优化空间。此外,对于嵌入式的变化和对模型性能的影响仍然缺乏清晰的说明。在本文件中,我们提议一个嵌入式神经专题模型,将专门设计的对嵌入和嵌入单词和嵌入专题的培训限制用于缩小参数的优化空间。为了揭示嵌入式模块的变化和作用,我们引入了基于嵌入式神经专题模型作为嵌入空间的评价标准。在此基础上,我们描述了嵌入式模块的变化和对模型性能的影响如何通过嵌入式模块的统一性变化。此外,我们展示了嵌入以内嵌入为基的神经专题模型的影响。两个基于主流数据集的实验结果表明,我们基于嵌入式模块的模型在模型质量和嵌入式模型之间的和谐性模型方面大大超出了基准模型。我们试图探索在嵌入式模型和嵌入式模型方面进行的最佳影响。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
58+阅读 · 2021年4月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员