We emphasize the importance of asking the right question when interpreting the decisions of a learning model. We discuss a natural extension of the theoretical machinery from Janzing et. al. 2020, which answers the question "Why did my model predict a person has cancer?" for answering a more involved question, "What caused my model to predict a person has cancer?" While the former quantifies the direct effects of variables on the model, the latter also accounts for indirect effects, thereby providing meaningful insights wherever human beings can reason in terms of cause and effect. We propose three broad categories for interpretations: observational, model-specific and causal each of which are significant in their own right. Furthermore, this paper quantifies feature relevance by weaving different natures of interpretations together with different measures as characteristic functions for Shapley symmetrization. Besides the widely used expected value of the model, we also discuss measures of statistical uncertainty and dispersion as informative candidates, and their merits in generating explanations for each data point, some of which are used in this context for the first time. These measures are not only useful for studying the influence of variables on the model output, but also on the predictive performance of the model, and for that we propose relevant characteristic functions that are also used for the first time.


翻译:我们强调在解释学习模式决定时提出正确问题的重要性。我们讨论了Janzing等人2020年的理论机制自然延伸问题,其中回答了“为什么我的模型预测一个人有癌症?” 回答一个更涉及的问题,即“为什么我的模型预测一个人有癌症?” 回答一个更涉及的问题,“为什么我的模型预测一个人有癌症?” 尽管前者量化了模型变量的直接影响,但后者也说明了间接影响,从而在人类从原因和效果角度可以理解的任何地方提供了有意义的洞察力。我们提出了三大解释类别:观察、模型特定和因果,其中每个因素本身都很重要。此外,本文通过编织不同性质的解释和不同计量的特征来量化特征相关性,作为Shapley 相配体化的特性功能。除了广泛使用的模型预期价值外,我们还讨论统计不确定性和分散性作为信息性候选者的衡量标准,以及它们对于解释每个数据点的优点,其中一些数据点首次用于解释。这些措施不仅有助于研究变量对模型产出的影响,而且对于我们使用的特性提出了相关的特性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
干货 | kNN 的花式用法
AI科技评论
5+阅读 · 2019年5月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
1+阅读 · 2021年2月12日
Arxiv
14+阅读 · 2020年12月17日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
干货 | kNN 的花式用法
AI科技评论
5+阅读 · 2019年5月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
1+阅读 · 2021年2月12日
Arxiv
14+阅读 · 2020年12月17日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
4+阅读 · 2017年11月14日
Top
微信扫码咨询专知VIP会员