Physics-informed neural networks (PINNs) are increasingly employed to replace/augment traditional numerical methods in solving partial differential equations (PDEs). While state-of-the-art PINNs have many attractive features, they approximate a specific realization of a PDE system and hence are problem-specific. That is, the model needs to be re-trained each time the boundary conditions (BCs) and domain shape/size change. This limitation prohibits the application of PINNs to realistic or large-scale engineering problems especially since the costs and efforts associated with their training are considerable. We introduce a transferable framework for solving boundary value problems (BVPs) via deep neural networks which can be trained once and used forever for various unseen domains and BCs. We first introduce genomic flow network(GFNet), a neural network that can infer the solution of a BVP across arbitrary BCson a small square domain called genome. Then, we proposed mosaic flow(MF) predictor, a novel iterative algorithm that assembles the GFNet's inferences for BVPs on large domains with unseen sizes/shapes and BCs while preserving the spatial regularity of the solution. We demonstrate that our framework can estimate the solution of Laplace and Navier-Stokes equations in domains of unseen shapes and BCs that are, respectively, 1200 and 12 times larger than the training domains. Since our framework eliminates the need to re-train models for unseen domains and BCs, it demonstrates up to 3 orders-of-magnitude speedups compared to the state-of-the-art.


翻译:物理知情神经网络(PINNs)越来越多地被用来取代/加强解决部分差异方程式(PDEs)的传统数字方法。虽然最先进的PINNs具有许多吸引人的功能,但它们接近PDE系统的具体实现,因此是特定问题。也就是说,每次边界条件(BCs)和域形/大小变化,模型都需要经过再培训。这一限制禁止将PINNs应用于现实的或大规模工程问题,特别是因为与其培训相关的成本和努力相当。我们引入了一个通过深层神经网络解决边界值问题的可转让框架(BVPS),这些网络可以一次培训,并永远用于各种隐蔽域和不列颠区域。我们首先引入基因流动网络(GFNet),这是一个神经网络,可以将BVP的解决方案推导出在任意的BCSonformormation(BVPs)上,然后我们建议采用新的迭代数模型,将GFNet的推算结果汇集到与GFNFNFPs(BP-LA-LA-BS-S-S-S-S-C-LS-S-LOLOLS-S-S-S-S-S-S-S-S-LS-S-S-S-Slental-S-S-S-S-S-S-S-SLS-S-S-S-S-S-S-SDS-S-S-S-S-S-S-S-S-S-S-S-S-SLisal-SLS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
64+阅读 · 2021年6月18日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
【DeepMind】强化学习教程,83页ppt
专知会员服务
151+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员