In this paper, we investigate the computation task with its sub-tasks subjected to sequential dependency for a mobile edge computing (MEC) system, under both slow fading channel and fast fading channel. To minimize mobile device's energy consumption while limiting task processing delay, offloading strategy (which decides to offload since which sub-task), communication resource (in terms of transmit power in every fading block), and computation resource (in terms of CPU frequency for local computing) are optimized jointly. In slow fading channel, channel state always keeps stable. With offloading decision given, the optimization of the rest variables is non-convex but is transformed to be convex. Golden search method is only required to find the optimal solution by decomposing the investigated problem into two levels. Then the optimal offloading decision can be easily selected. In fast fading channel, channel state may fluctuate even when offloading data. Online policy depending on instant channel state is desired and the optimal solution is derived. In addition, it is proved the derived online policy will converge to an offline policy when channel coherence time is short enough, which can help to save computation complexity. Numerical results verify the effectiveness and correctness of our proposed strategies and analysis.


翻译:在本文中, 我们用移动边缘计算系统( MEC) 的子任务来调查其依次依次依赖的计算任务。 在缓慢淡化的频道和快速淡化的频道下, 移动边缘计算系统( MEC) 。 为了在限制任务处理延迟的同时最大限度地减少移动设备的能源消耗, 只需通过将所调查的问题分解为两个级别来找到最佳解决方案, 只需金色搜索方法即可。 然后, 最佳卸载决定可以很容易地选择。 在快速淡化的频道上, 频道状态可能会波动, 即使在卸载数据时也会波动。 在缓慢的淡化频道中, 频道状态总是保持稳定 。 此外, 在给出了卸载决定后, 其余变量的优化是非colvex, 但被转换为 convex。 只需要金色搜索方法就可以找到最佳解决方案, 将所调查的问题解析成两个级别 。 在快速淡化的频道上, 频道状态下, 所希望的在线政策会起伏, 并得出最佳的解决方案 。 此外, 事实证明, 当频道一致性时间足够短的时候, 能够验证所衍生的在线政策会与离线式政策会合并为离线政策, 。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
10+阅读 · 2018年2月9日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员