Edge intelligence requires to fast access distributed data samples generated by edge devices. The challenge is using limited radio resource to acquire massive data samples for training machine learning models at edge server. In this article, we propose a new communication-efficient edge intelligence scheme where the most useful data samples are selected to train the model. Here the usefulness or values of data samples is measured by data diversity which is defined as the difference between data samples. We derive a close-form expression of data diversity that combines data informativeness and channel quality. Then a joint data-and-channel diversity aware multiuser scheduling algorithm is proposed. We find that noise is useful for enhancing data diversity under some conditions.
翻译:边缘情报要求快速获取边缘设备产生的分布式数据样本。挑战在于利用有限的无线电资源获取大规模数据样本,用于在边缘服务器上培训机器学习模型。在本条中,我们提出一个新的通信高效边际情报计划,选择最有用的数据样本来培训模型。在这里,数据样本的有用性或价值用数据多样性来衡量,数据样本的定义是数据样本之间的差异。我们从数据多样性中得出一种近身形式的数据多样性表现,将数据信息性和频道质量结合起来。然后提出一个数据和通道多样性联合意识多用户排期算法。我们发现,噪音在某些条件下有利于增强数据多样性。