A terrain is an $x$-monotone polygon whose lower boundary is a single line segment. We present an algorithm to find in a terrain a triangle of largest area in $O(n \log n)$ time, where $n$ is the number of vertices defining the terrain. The best previous algorithm for this problem has a running time of $O(n^2)$.
翻译:地形是一个美元- 摩诺酮多边形, 其下边界为单线段。 我们提出一种算法, 在一个地形中找到最大面积的三角形, 以美元( n\log n) 时间计算, 美元是确定地形的顶点数。 这个问题的先前算法最好使用美元( n% 2) 。