We develop a probabilistic interpretation of two-stage object detection. We show that this probabilistic interpretation motivates a number of common empirical training practices. It also suggests changes to two-stage detection pipelines. Specifically, the first stage should infer proper object-vs-background likelihoods, which should then inform the overall score of the detector. A standard region proposal network (RPN) cannot infer this likelihood sufficiently well, but many one-stage detectors can. We show how to build a probabilistic two-stage detector from any state-of-the-art one-stage detector. The resulting detectors are faster and more accurate than both their one- and two-stage precursors. Our detector achieves 56.4 mAP on COCO test-dev with single-scale testing, outperforming all published results. Using a lightweight backbone, our detector achieves 49.2 mAP on COCO at 33 fps on a Titan Xp, outperforming the popular YOLOv4 model.
翻译:我们开发了对两阶段天体探测的概率解释。 我们显示, 这种概率解释激励了一系列共同的经验性培训做法。 它还建议了对两阶段探测管道的修改。 具体地说, 第一阶段应该推断出适当的天体/ 地表概率, 然后应该告知探测器的总分。 一个标准区域建议网络(RPN)无法充分推断出这种可能性, 但是许多级探测器可以做到。 我们展示了如何从任何最先进的一阶段探测器中建立一个两阶段概率探测器。 由此产生的探测器比其一阶段和两阶段先质都更快和更加精确。 我们的探测器在单级测试中取得了56.4百万分CO- dev 测试结果, 超过了所有公布的结果。 我们的探测器使用轻质脊椎,在泰坦Xp的33英尺上取得了49.2百万分的CO, 超过了流行的YOLOv4模型。