Vector-based cellular automata (CA) based on real land-parcel has become an important trend in current urban development simulation studies. Compared with raster-based and parcel-based CA models, vector CA models are difficult to be widely used because of their complex data structures and technical difficulties. The UrbanVCA, a brand-new vector CA-based urban development simulation framework was proposed in this study, which supports multiple machine-learning models. To measure the simulation accuracy better, this study also first proposes a vector-based landscape index (VecLI) model based on the real land-parcels. Using Shunde, Guangdong as the study area, the UrbanVCA simulates multiple types of urban land-use changes at the land-parcel level have achieved a high accuracy (FoM=0.243) and the landscape index similarity reaches 87.3%. The simulation results in 2030 show that the eco-protection scenario can promote urban agglomeration and reduce ecological aggression and loss of arable land by at least 60%. Besides, we have developed and released UrbanVCA software for urban planners and researchers.


翻译:以真实土地分隔为基础的基于矢量的蜂窝自动自动成像(CA)在目前城市发展模拟研究中已成为一个重要趋势。与光栅和基于包裹的CA模型相比,矢量的CA模型由于其复杂的数据结构和技术困难而难以广泛使用。本项研究提出了城市VCA,这是一个全新的基于新矢量的CA城市发展模拟框架,它支持多种机器学习模型。为了更好地衡量模拟准确性,本项研究还首先提议了一个基于矢量的地貌指数(VecLI)模型,该模型以真实土地分割为基础。利用广东的Shunde作为研究领域,城市VCA模拟了陆地一级多种类型的城市土地利用变化,实现了很高的精确度(FOM=0.243),地貌指数接近87.3%。2030年的模拟结果表明,生态保护情景可以促进城市聚集,至少减少60%的生态侵略和可耕地损失。此外,我们还开发和释放了城市规划者和研究人员的城市VCA软件。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
24+阅读 · 2020年3月11日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2017年10月1日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员