We present a general coalgebraic setting in which we define finite and infinite behaviour with B\"uchi acceptance condition for systems whose type is a monad. The first part of the paper is devoted to presenting a construction of a monad suitable for modelling (in)finite behaviour. The second part of the paper focuses on presenting the concepts of a (coalgebraic) automaton and its ($\omega$-) behaviour. We end the paper with coalgebraic Kleene-type theorems for ($\omega$-) regular input. The framework is instantiated on non-deterministic (B\"uchi) automata, tree automata and probabilistic automata.
翻译:我们展示了一种一般的煤热地理环境, 我们用 B\ “ uchi ” 来定义其型号为 monad 的系统接受条件的有限和无限行为。 论文的第一部分专门介绍适合建模( 无限) 行为的寺院结构。 文件的第二部分侧重于介绍( coalgebaric) 自动地图及其( omega$- ) 行为的概念。 我们用用于 $\\ omega$- 定期输入的 煤热- leene 类理论来结束纸张 。 框架在非非定义( B\ “ uchi ) 自动、 树自动和 概率性自动上即时化 。