Isolation forest or "iForest" is an intuitive and widely used algorithm for anomaly detection that follows a simple yet effective idea: in a given data distribution, if a threshold (split point) is selected uniformly at random within the range of some variable and data points are divided according to whether they are greater or smaller than this threshold, outlier points are more likely to end up alone or in the smaller partition. The original procedure suggested the choice of variable to split and split point within a variable to be done uniformly at random at each step, but this paper shows that "clustered" diverse outliers - oftentimes a more interesting class of outliers than others - can be more easily identified by applying a non-uniformly-random choice of variables and/or thresholds. Different split guiding criteria are compared and some are found to result in significantly better outlier discrimination for certain classes of outliers.


翻译:隔离森林或“ 森林” 或“ 森林” 是一种直觉和广泛使用的异常现象检测算法,遵循简单而有效的理念:在特定的数据分布中,如果在某些变量范围内统一随机选择一个阈值(分点),并且数据点根据是否大于或小于该阈值而分割,则偏差点更有可能单独结束,或者在较小的分区中结束。原始程序建议选择变量,在变量中进行分裂和分点,每个步骤都要统一随机完成,但本文显示,“集聚”的外层——往往比其他外层更有趣——通过对变量和/或阈值进行非统一的随机选择,可以更容易地识别。对不同的区分指导标准进行比较,并发现某些外端类别有明显更好的外向歧视。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Memory-guided Normality for Anomaly Detection
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
3+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员