We propose a novel framework for model-order reduction of hyperbolic differential equations. The approach combines a relaxation formulation of the hyperbolic equations with a discretization using shifted base functions. Model-order reduction techniques are then applied to the resulting system of coupled ordinary differential equations. On computational examples including in particular the case of shock waves we show the validity of the approach and the performance of the reduced system.
翻译:我们为双曲差异方程式的模型-顺序削减提出了一个新的框架。这个方法将双曲方程式的放松配方与使用转移的基本功能的离散化结合起来。然后,对由此产生的同时的普通差异方程式系统应用了模型-顺序削减技术。在包括特别包括冲击波在内的计算示例中,我们显示了该方法的有效性和被削减的系统的性能。