To counter the volatile nature of renewable energy sources, gas networks take a vital role. But, to ensure fulfillment of contracts under these circumstances, a vast number of possible scenarios, incorporating uncertain supply and demand, has to be simulated ahead of time. This many-query gas network simulation task can be accelerated by model reduction, yet, large-scale, nonlinear, parametric, hyperbolic partial differential(-algebraic) equation systems, modeling natural gas transport, are a challenging application for model order reduction algorithms. For this industrial application, we bring together the scientific computing topics of: mathematical modeling of gas transport networks, numerical simulation of hyperbolic partial differential equation, and parametric model reduction for nonlinear systems. This research resulted in the "morgen" (Model Order Reduction for Gas and Energy Networks) software platform, which enables modular testing of various combinations of models, solvers, and model reduction methods. In this work we present the theoretical background on systemic modeling and structured, data-driven, system-theoretic model reduction for gas networks, as well as the implementation of "morgen" and associated numerical experiments testing model reduction adapted to gas network models.
翻译:为了应对可再生能源的不稳定性,天然气网络发挥着关键作用。但是,为确保在这些情况下履行合同,必须提前模拟大量可能的设想情景,包括不确定的供求情况。这一众多的气体网络模拟任务可以通过减少模型加速,然而,大规模、非线性、参数性、超单向部分差异(代谢性)等方程系统、天然气运输模型是减少订单模型算法的一个具有挑战性的应用。对于这一工业应用,我们汇集了以下科学计算主题:天然气运输网络数学模型、超单向部分方程式数字模拟和非线性系统参数模型削减。这一研究产生了“摩尔根”(减少天然气和能源网络模式模式)软件平台,使各种模型、溶剂和模型削减方法的组合能够进行模块测试。在这项工作中,我们介绍了系统模型的理论背景,以及结构、数据驱动、系统理论模型模型的减少,以及实施“摩尔根”及相关的减少气体网络数字实验模型模型,以适应减少气体网络。