We show that the topes of a complex of oriented matroids (abbreviated COM) of VC-dimension $d$ admit a proper labeled sample compression scheme of size $d$. This considerably extends results of Moran and Warmuth on ample classes, of Ben-David and Litman on affine arrangements of hyperplanes, and of the authors on complexes of uniform oriented matroids, and is a step towards the sample compression conjecture -- one of the oldest open problems in computational learning theory. On the one hand, our approach exploits the rich combinatorial cell structure of COMs via oriented matroid theory. On the other hand, viewing tope graphs of COMs as partial cubes creates a fruitful link to metric graph theory.
翻译:我们显示,由VC-dimension公司一家方向型机器人(ABBERED COM)组成的综合体的巨猿接受了一个标有标称的大小为$d$的适当样本压缩方案。 这大大扩展了摩兰和Warmuth公司在大量阶级、Ben-David和Litman公司在超高机的方形安排方面的结果,以及作者们在统一型机器人的复合体方面的结果,这是向样本压缩预测迈出的一步,这是计算学理论中最古老的公开问题之一。 一方面,我们的方法通过方向型机体理论来利用COMs丰富的组合细胞结构。 另一方面,将COMs图作为部分立方形的模型与图理建立了富有成果的联系。