Federated learning (FL), enabling different medical institutions or clients to train a model collaboratively without data privacy leakage, has drawn great attention in medical imaging communities recently. Though inter-client data heterogeneity has been thoroughly studied, the class imbalance problem due to the existence of rare diseases still is under-explored. In this paper, we propose a novel FL framework FedRare for medical image classification especially on dealing with data heterogeneity with the existence of rare diseases. In FedRare, each client trains a model locally to extract highly-separable latent features for classification via intra-client supervised contrastive learning. Considering the limited data on rare diseases, we build positive sample queues for augmentation (i.e. data re-sampling). The server in FedRare would collect the latent features from clients and automatically select the most reliable latent features as guidance sent back to clients. Then, each client is jointly trained by an inter-client contrastive loss to align its latent features to the federated latent features of full classes. In this way, the parameter/feature variances across clients are effectively minimized, leading to better convergence and performance improvements. Experimental results on the publicly-available dataset for skin lesion diagnosis demonstrate FedRare's superior performance. Under the 10-client federated setting where four clients have no rare disease samples, FedRare achieves an average increase of 9.60% and 5.90% in balanced accuracy compared to the baseline framework FedAvg and the state-of-the-art approach FedIRM respectively. Considering the board existence of rare diseases in clinical scenarios, we believe FedRare would benefit future FL framework design for medical image classification. The source code of this paper is publicly available at https://github.com/wnn2000/FedRare.
翻译:联邦学习(FL),使不同的医疗机构或客户能够合作培训一个没有数据隐私泄漏的模型,最近引起了医疗成像界的极大关注。虽然对客户间数据差异进行了彻底研究,但由于存在罕见疾病,导致的阶级不平衡问题仍未得到充分探讨。在本文中,我们提议建立一个新型FL FedRarre框架,用于医疗图像分类,特别是处理数据差异性与罕见疾病存在的关系。在FedRare,每个客户都在当地培训一个模型,通过客户内部监督对比学习,提取高度可分离的潜在特征进行分类。考虑到关于罕见疾病的有限数据,我们为增扩(即数据再抽样)建立积极的样本列队列。FedRarre的服务器将从客户收集潜在特征,并自动选择最可靠的潜在特征作为向客户发送的指南。然后,每个客户都通过一个客户间对比性损失来将其潜在的医学特征与全类的FledRawive潜在特征相匹配。在这种方式上,客户之间的参数/相对差异正在有效地最小化,导致更高程度的临床观点的趋近点的趋近点, 以及更精确的IMFrialalalalal exeralalalal exeral lax 。在10 sal sal sal sal sal be sal be sal be sal deal deal be sal deal deal deal deal deal deal be sal be sal deal deal deald dre dal deal deal deal deal deald dre sal deal deald dre sal deal deal deal deal deal deal deal deald saldaldaldaldaldaldaldaldald saldaldald saldald sald sald sal be sal be sald saldaldaldaldaldaldaldaldaldaldaldal be saldaldaldaldaldald sal be sal be sald saldaldaldald sal be sal be sal be saldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald saldal