项目名称: 基于硅量子点的宽光谱响应纳米结构及其在光伏器件中的应用

项目编号: No.61306003

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 宋超

作者单位: 韩山师范学院

项目金额: 25万元

中文摘要: 本项目针对当前硅基薄膜太阳能电池非全光谱吸收引起的转换效率低下的问题,通过对硅量子点的调控并与纳米陷光结构的结合,探索实现宽光谱响应和增强光吸收的有效途径,以期在廉价的玻璃衬底上获得高效率的硅基光伏电池。项目主要采用实验和理论计算相结合的方式,在玻璃衬底上构建硅量子点结构,利用量子限制效应,调控硅基量子点的带隙结构,拓宽量子点的光谱响应范围,特别是在紫外-可见光波段的吸收;同时,利用氢等离子体处理并结合激光退火技术,对量子点进行钝化处理,降低界面态密度,减少杂质自净化过程,获得具有良好光学和电输运特性的硅量子点薄膜;进而,利用自组装技术和水热合成法在玻璃衬底上构建纳米图形陷光结构,在此基础上,构建具有纳米图形结构的全量子点硅基p-i-n型光伏电池,深入理解相应结构中的光吸收和陷光机理,优化纳米结构,以期实现宽光谱响应及吸收增强,提高电池的光电转换效率。

中文关键词: 硅纳米结构;陷光结构;光伏电池;;

英文摘要: Due to the non-full spectrum absorption, the silicon-based solar cells have low power conversion efficiency. So it is necessary to investigate the solar cells with wide spectral response in order to enhance the conversion efficiency. In this subject, the silicon quantum dots and nano-patterned structures based on the galss substrate are investigated for wide spectrum response and enhancement of absorption, which is used to improve the efficiency of silicon-based solar cell. By using experimental and theoretical methods, the effect of quantum confinement on the band gap of silicon quantum dots will be studied to widen the spectral response, especially in the range of UV to visible light. Meanwhile, by using hydrogen plasma and annealing treatment, the silicon quantum dots with better optical and electrical transport properties will be investigated. In order to further improve the absorption and conversion efficiency of solar cells, the nano-patterned silicon structures with antireflection and light absorption enhancement is constructed by using self-assembly and hydrothermal synthesis methods. Then the p-i-n type photovoltaic cells based on nano-patterned structure and silicon quantum dots will be constructed. By optimizing the nanostructures, the improvement of absorption and conversion efficiency of the solar c

英文关键词: silicon nanostructures;trapping structure;photovotaic cell;;

成为VIP会员查看完整内容
0

相关内容

基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
23+阅读 · 2021年6月19日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
56+阅读 · 2021年5月3日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
小贴士
相关VIP内容
基于对比调整缩放的图自监督学习
专知会员服务
8+阅读 · 2022年4月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
23+阅读 · 2021年6月19日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员