A hyperbole is an intentional and creative exaggeration not to be taken literally. Despite its ubiquity in daily life, the computational explorations of hyperboles are scarce. In this paper, we tackle the under-explored and challenging task: sentence-level hyperbole generation. We start with a representative syntactic pattern for intensification and systematically study the semantic (commonsense and counterfactual) relationships between each component in such hyperboles. Next, we leverage the COMeT and reverse COMeT models to do commonsense and counterfactual inference. We then generate multiple hyperbole candidates based on our findings from the pattern, and train neural classifiers to rank and select high-quality hyperboles. Automatic and human evaluations show that our generation method is able to generate hyperboles creatively with high success rate and intensity scores.
翻译:高音是非字面化的有意和创造性夸张。 尽管高音在日常生活中普遍存在, 但计算性探索却很少。 在本文中, 我们处理探索不足和具有挑战性的任务: 高音级的超音速一代。 我们从一个具有代表性的合成模式开始, 以强化和系统研究超音波中每个组成部分之间的语义( 共和和反事实) 关系。 其次, 我们利用 COMT 和 COMT 模型来进行常识和反事实推论。 然后, 我们根据我们从模式中得出的研究结果产生多个超音率候选人, 并训练神经分类师来排位和选择高质量的高音速代。 自动和人类评估显示, 我们的一代方法能够创造性地生成高成功率和强度的超音速代谢。