The TESS mission produces a large amount of time series data, only a small fraction of which contain detectable exoplanetary transit signals. Deep learning techniques such as neural networks have proved effective at differentiating promising astrophysical eclipsing candidates from other phenomena such as stellar variability and systematic instrumental effects in an efficient, unbiased and sustainable manner. This paper presents a high quality dataset containing light curves from the Primary Mission and 1st Extended Mission full frame images and periodic signals detected via Box Least Squares (Kov\'acs et al. 2002; Hartman 2012). The dataset was curated using a thorough manual review process then used to train a neural network called Astronet-Triage-v2. On our test set, for transiting/eclipsing events we achieve a 99.6% recall (true positives over all data with positive labels) at a precision of 75.7% (true positives over all predicted positives). Since 90% of our training data is from the Primary Mission, we also test our ability to generalize on held-out 1st Extended Mission data. Here, we find an area under the precision-recall curve of 0.965, a 4% improvement over Astronet-Triage (Yu et al. 2019). On the TESS Object of Interest (TOI) Catalog through April 2022, a shortlist of planets and planet candidates, Astronet-Triage-v2 is able to recover 3577 out of 4140 TOIs, while Astronet-Triage only recovers 3349 targets at an equal level of precision. In other words, upgrading to Astronet-Triage-v2 helps save at least 200 planet candidates from being lost. The new model is currently used for planet candidate triage in the Quick-Look Pipeline (Huang et al. 2020a,b; Kunimoto et al. 2021).
翻译:TESS 任务生成了大量时间序列数据, 其中只有一小部分包含可检测到的外星流信号。 神经网络等深层学习技术已证明能够有效地区分有希望的天体物理变异和系统工具效应等其他现象, 例如以高效、公正和可持续的方式, 高效、 公正和可持续的方式, 包括恒星变异和系统工具效应。 本文展示了一个高质量的数据集, 包含来自初级飞行任务的光曲线和第一个扩展飞行任务的完整图像和通过Box Onstrain广场检测到的定期信号( Kov\acs等人, 2002年; Hartman,2012年)。 数据集使用一个彻底的手动审查程序, 用于培训一个名为Astronet- Triage 的神经网络目标。 在我们的测试组中, 中转/ Eclipplipsing 事件回顾了99.6%( 所有带有正面标签的数据的正数) 精确度为75.7%( 相对于所有预测的正值而言, 损为正数。 由于我们20 % 的训练数据来自初级飞行任务, 我们也测试了我们是否有能力对一级扩展任务数据进行总体分析。 这里, 更新了一个区域, 在精确轨道上, 4- 直径 直径 直径 直径 直径 直 直 直 直径 直 直 直 直 直 直 直 直 直 直 直 直 到 直 直 直 直 直 直 到 直 到 直 到 。