In many common situations, a Bayesian credible interval will be, given the same data, very similar to a frequentist confidence interval, and researchers will interpret these intervals in a similar fashion. However, no predictable similarity exists when credible intervals are based on model-averaged posteriors whenever one of the two models under consideration is a so called ``point-null''. Not only can this model-averaged credible interval be quite different than the frequentist confidence interval, in some cases it may be undefinable. This is a lesser-known consequence of the Jeffreys-Lindley paradox and is of particular interest given the popularity of the Bayes factor for testing point-null hypotheses.
翻译:在许多常见情况下,如果数据相同,贝耶斯的可靠间隔与常客信任间隔非常相似,研究人员也将以类似的方式解释这些间隔。然而,如果所考虑的两个模型中有一个是所谓的“点核”,那么,如果可信的间隔以模型平均后方为基础,则不存在可预见的相似之处。 不仅这一模型平均可信的间隔与常客信任间隔大不相同,在某些情况下,它可能无法确定。 这是杰弗里斯-林德利悖论的一个不太为人所知的后果,而且鉴于测试点核假说的贝亚斯系数受欢迎,因此特别令人感兴趣。