As an important problem of causal inference, we discuss the identification and estimation of treatment effects under unobserved confounding. Representing the confounder as a latent variable, we propose Intact-VAE, a new variant of variational autoencoder (VAE), motivated by the prognostic score that is sufficient for identifying treatment effects. We theoretically show that, under certain settings, treatment effects are identified by our model, and further, based on the identifiability of our model (i.e., determinacy of representation), our VAE is a consistent estimator with representation balanced for treatment groups. Experiments on (semi-)synthetic datasets show state-of-the-art performance under diverse settings.


翻译:作为重要的因果推断问题,我们讨论在未观察到的混乱下确定和估计治疗效果的问题。我们代表困惑者作为潜在的变量,提议采用Intact-VAE, 这是一种新的变异自动编码器变异变体,其动机是预测性分数,足以确定治疗效果。我们理论上表明,在某些环境下,治疗效果是由我们的模型确定的,此外,根据我们模型的可识别性(即代表的确定性),我们的VAE是一个一致的估算器,治疗组的代表性是平衡的。关于(半)合成数据集的实验显示了不同环境中的最新表现。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
36+阅读 · 2020年4月1日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
122+阅读 · 2019年12月9日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员