We analyse the behaviour of the synthetic likelihood (SL) method when the model generating the simulated data differs from the actual data generating process. One of the most common methods to obtain SL-based inferences is via the Bayesian posterior distribution, with this method often referred to as Bayesian synthetic likelihood (BSL). We demonstrate that when the model is misspecified, the BSL posterior can be poorly behaved, placing significant posterior mass on values of the model parameters that do not represent the true features observed in the data. Theoretical results demonstrate that in misspecified models the BSL posterior can display a wide range of behaviours depending on the level of model misspecification, including being asymptotically non-Gaussian. Our results suggest that a recently proposed robust BSL approach can ameliorate this behavior and deliver reliable posterior inference under model misspecification. We document all theoretical results using a simple running example.
翻译:当生成模拟数据的模型与实际数据生成过程不同时,我们分析合成可能性方法的行为。获取基于 SL 的推论的最常用方法之一是通过巴耶西亚后方分布法,这种方法通常被称为巴耶斯合成可能性(BSL)。我们证明,当模型被错误描述时,BSL 后端可能行为不良,在模型参数值上放置重要的后端质量,而模型参数并不代表数据中观察到的真实特征。理论结果显示,在错误描述的模型中,BSL 后端可能显示一系列不同的行为,取决于模型的错误描述程度,包括非加西安的抽象非加西安。我们的结果显示,最近提出的稳健的 BSL 方法可以改善这种行为,并在模型错误描述下提供可靠的远端推断。我们用简单的运行实例记录所有理论结果。