We study a $K$-user coded-caching broadcast problem in a joint source-channel coding framework. The transmitter observes a database of files that are being generated at a certain rate per channel use, and each user has a cache, which can store a fixed fraction of the generated symbols. In the delivery phase, the transmitter broadcasts a message so that the users can decode their desired files using the received signal and their cache content. The communication between the transmitter and the receivers happens over a (deterministic) \textit{time-varying} erasure broadcast channel, and the channel state information is only available to the users. We characterize the maximum achievable source rate for the $2$-user and the degraded $K$-user problems. We provide an upper bound for any caching strategy's achievable source rates. Finally, we present a linear programming formulation to show that the upper bound is not a sharp characterization. Closing the gap between the achievable rate and the optimum rate remains open.
翻译:我们在一个联合源-通道编码框架中研究一个 $K 用户编码缓存的广播问题。 发送器观察着一个以每个频道使用一定速率生成的文件数据库, 每个用户都有一个缓存器, 可以存储生成的符号的固定部分。 在发送阶段, 发送器播放一个信息, 让用户能够使用接收的信号和缓存内容解码他们想要的文件。 发送器和接收器之间的通信发生在一个( 确定)\ textit{time- vrey} 取消广播频道, 频道状态信息只能提供给用户。 我们为2美元用户和退化的用户规定了最大可实现源速率。 我们为任何缓存战略的可实现源率提供了一条上限。 最后, 我们提出了一个线性编程配方, 以显示上界并不是一个尖锐的特征。 缩小可实现率和最佳速率之间的差距仍然敞开。