In this paper we develop a new machinery to study the capacity of artificial neural networks (ANNs) to approximate high-dimensional functions without suffering from the curse of dimensionality. Specifically, we introduce a concept which we refer to as approximation spaces of artificial neural networks and we present several tools to handle those spaces. Roughly speaking, approximation spaces consist of sequences of functions which can, in a suitable way, be approximated by ANNs without curse of dimensionality in the sense that the number of required ANN parameters to approximate a function of the sequence with an accuracy $\varepsilon > 0$ grows at most polynomially both in the reciprocal $1/\varepsilon$ of the required accuracy and in the dimension $d \in \mathbb{N} = \{1, 2, 3, \ldots \}$ of the function. We show under suitable assumptions that these approximation spaces are closed under various operations including linear combinations, formations of limits, and infinite compositions. To illustrate the power of the machinery proposed in this paper, we employ the developed theory to prove that ANNs have the capacity to overcome the curse of dimensionality in the numerical approximation of certain first order transport partial differential equations (PDEs). Under suitable conditions we even prove that approximation spaces are closed under flows of first order transport PDEs.


翻译:在本文中,我们开发了一个新的机制来研究人工神经网络(ANNs)在不受维度诅咒影响的情况下,近似高维功能的能力。具体地说,我们引入了一个概念,我们称之为人工神经网络近似空间,我们提出了处理这些空间的若干工具。大致上,近端空间由功能序列组成,这些功能序列可以以适当的方式被ANNs所近似而不受维度的诅咒,因为需要ANN参数的数量可以精确地接近序列函数的功能,其精确度为 $\varepsilon > 0美元,以最多元的形式增长。我们采用发达的理论来证明,所要求的精确度的对等值为1/\\\varepslon$,在维度上,我们称之为人造神经网络的近似空间=1,2,3,3\ldots ⁇ $。我们根据适当的假设,这些近端空间是在各种操作下关闭的,包括线性组合、限制形成和无限的构成。为了说明本文件中提议的机器的力量,我们使用先进的理论来证明,在所要求的机械中,我们所开发的理论可以证明,在需要的PNNPDSlexlexloneximimimimimimimimal 中,在一定的轨道上,我们具有一定的压压压压压压压定的压压压压压压的压定。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
1+阅读 · 2021年2月7日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员