Remote photoplethysmography (rPPG) is an attractive method for noninvasive, convenient and concomitant measurement of physiological vital signals. Public benchmark datasets have served a valuable role in the development of this technology and improvements in accuracy over recent years.However, there remain gaps the public datasets.First, despite the ubiquity of cameras on mobile devices, there are few datasets recorded specifically with mobile phones cameras. Second, most datasets are relatively small and therefore are limited in diversity, both in appearance (e.g., skin tone), behaviors (e.g., motion) and enivornment (e.g., lighting conditions). In an effort to help the field advance, we present the Multi-domain Mobile Video Physiology Dataset (MMPD), comprising 11 hours of recordings from mobile phones of 33 subjects. The dataset was designed to capture videos with greater representation across skin tone, body motion, and lighting conditions. MMPD is comprehensive with eight descriptive labels and can be used in conjunction with the rPPG-toolbox. The Github repository of our dataset: {https://github.com/McJackTang/MMPD_rPPG_dataset}


翻译:远程光谱成像仪(rPPG)是非侵入性、方便性和同时测量生理重要信号的有吸引力的方法。公共基准数据集在开发这一技术和提高近些年来准确性方面发挥了宝贵的作用。然而,公共数据集仍然存在差距。首先,尽管移动设备上摄像机无处不在,但专门用移动电话摄像机记录的数据集很少。第二,大多数数据集相对较小,因此在多样性方面受到限制,无论是外观(如皮肤音调)、行为(如运动)和消化(如照明条件)方面都是如此。为了帮助实地推进,我们介绍了多多面体移动视频物理数据集(MDPD),其中包括33个主题移动电话11小时的录音。数据集旨在捕捉更多体现皮肤音、身体运动和照明条件的视频。MMDPD具有8个描述性标签,可以与 RCPG-toolbox一起使用。我们数据系统:Gthruthub_PDG_MG_MPDG} httpsqreport:G_MDG_MG_MG_MG_MG_MGs_MGsqs_MGs_MGs_MGs_MGsdddddddddddals_Ms_Ms_MGs)的储存库。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
39+阅读 · 2021年11月11日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员