Obtaining manual annotations for large datasets for supervised training of deep learning (DL) models is challenging. The availability of large unlabeled datasets compared to labeled ones motivate the use of self-supervised pretraining to initialize DL models for subsequent segmentation tasks. In this work, we consider two pre-training approaches for driving a DL model to learn different representations using: a) regression loss that exploits spatial dependencies within an image and b) contrastive loss that exploits semantic similarity between pairs of images. The effect of pretraining techniques is evaluated in two downstream segmentation applications using Magnetic Resonance (MR) images: a) liver segmentation in abdominal T2-weighted MR images and b) prostate segmentation in T2-weighted MR images of the prostate. We observed that DL models pretrained using self-supervision can be finetuned for comparable performance with fewer labeled datasets. Additionally, we also observed that initializing the DL model using contrastive loss based pretraining performed better than the regression loss.
翻译:为监督深层学习模型(DL)培训获得大型数据集的手工说明是困难的。与标签的模型相比,大型无标签数据集的提供情况具有挑战性。与标签的数据集相比,大型无标签数据集的提供情况促使人们使用自我监督的预培训,为随后的分化任务初始化 DL模型。在这项工作中,我们考虑两种驱动DL模型的训练前方法,以学习不同的表达方式,使用以下方法:(a) 利用图像中的空间依赖度进行回归损失,利用图像中的语义相似性;(b) 利用图像的语义相似性进行对比。在两个下游分解应用中,使用磁共振图像对培训前技术的影响进行了评估:(a) 腹部T2-加权MR图像中的肝分解,以及(b) 前列的T2-加权MR图像中的先导分解。我们发现,使用自上标签数据集的预先训练的DL模型,可以根据类似的性能进行微调整。此外,我们还注意到,使用基于对比性损失的预演前导的DL模型的初始性比回归损失要好于倒退损失。