Cardiovascular disease, the leading cause of death globally, is an age-related disease. Understanding the morphological and functional changes of the heart during ageing is a key scientific question, the answer to which will help us define important risk factors of cardiovascular disease and monitor disease progression. In this work, we propose a novel conditional generative model to describe the changes of 3D anatomy of the heart during ageing. The proposed model is flexible and allows integration of multiple clinical factors (e.g. age, gender) into the generating process. We train the model on a large-scale cross-sectional dataset of cardiac anatomies and evaluate on both cross-sectional and longitudinal datasets. The model demonstrates excellent performance in predicting the longitudinal evolution of the ageing heart and modelling its data distribution.
翻译:心血管疾病是全球主要死亡原因之一,是一种与年龄有关的疾病。了解老龄化期间心脏的形态和功能变化是一个关键的科学问题,这个问题的答案将帮助我们确定心血管疾病的重要风险因素并监测疾病的进展。在这项工作中,我们提出了一个新的有条件的遗传模型,以描述老龄化期间心脏3D解剖的变化。拟议的模型是灵活的,允许将多种临床因素(如年龄、性别)纳入生成过程。我们培训了大规模心脏解剖跨部门数据集模型,并评价了跨部门和纵向数据集。该模型显示在预测老龄化心脏的纵向演变和模拟其数据分布方面的出色表现。