Adapting pre-trained neural models to downstream tasks has become the standard practice for obtaining high-quality models. In this work, we propose a novel model adaptation paradigm, adapting by pruning, which prunes neural connections in the pre-trained model to optimise the performance on the target task; all remaining connections have their weights intact. We formulate adapting-by-pruning as an optimisation problem with a differentiable loss and propose an efficient algorithm to prune the model. We prove that the algorithm is near-optimal under standard assumptions and apply the algorithm to adapt BERT to some GLUE tasks. Results suggest that our method can prune up to 50% weights in BERT while yielding similar performance compared to the fine-tuned full model. We also compare our method with other state-of-the-art pruning methods and study the topological differences of their obtained sub-networks.


翻译:将经过培训的神经模型适应到下游任务已成为获得高质量模型的标准做法。 在这项工作中,我们提出一种新的模型适应模式,通过修剪加以调整,在经过培训的模型中将神经连接用于优化目标任务的业绩;所有剩余连接的重量均保持不变。我们将逐个调试作为最佳化问题,有不同的损失,并提出一种有效的算法来利用模型。我们证明,在标准假设下,算法是接近最佳的,并应用算法使BERT适应一些GLUE任务。结果表明,我们的方法可以使BERT达到50%的重量,同时取得与经过精细调整的完整模型相似的性能。我们还将我们的方法与其他最先进的调试方法进行比较,并研究获得的子网络的地形差异。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
27+阅读 · 2020年11月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2019年1月16日
Conditional BERT Contextual Augmentation
Arxiv
8+阅读 · 2018年12月17日
VIP会员
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员