Effectus theory is a relatively new approach to categorical logic that can be seen as an abstract form of generalized probabilistic theories (GPTs). While the scalars of a GPT are always the real unit interval [0,1], in an effectus they can form any effect monoid. Hence, there are quite exotic effectuses resulting from more pathological effect monoids. In this paper we introduce sigma-effectuses, where certain countable sums of morphisms are defined. We study in particular sigma-effectuses where unnormalized states can be normalized. We show that a non-trivial sigma-effectus with normalization has as scalars either the two-element effect monoid 0,1 or the real unit interval [0,1]. When states and/or predicates separate the morphisms we find that in the 0,1 case the category must embed into the category of sets and partial functions (and hence the category of Boolean algebras), showing that it implements a deterministic model, while in the [0,1] case we find it embeds into the category of Banach order-unit spaces and of Banach pre-base-norm spaces (satisfying additional properties), recovering the structure present in GPTs. Hence, from abstract categorical and operational considerations we find a dichotomy between deterministic and convex probabilistic models of physical theories.
翻译:对绝对逻辑而言,效果理论是一种相对新的方法,可以被视为一种抽象的普遍概率理论(GPTs)的抽象形式。虽然GPT的标语始终是真实的单位间隔[0,1],但其效果可以形成任何效果单体。因此,由于更多病理效应的单一性而产生了相当异国效应。在本文中,我们引入了某些可计算成数的变形功能,从而定义了某些可计算数量。我们特别研究了非正常国家可实现正常化的定型效应。我们表明,一个非三重的正统的成形效应,其作用总是真实的单位间隔[0,1],其效果可以形成任何效果。因此,当国家和(或)直立性效应因更多的病态时,我们发现在0,1例中,该类别必须嵌入组合和部分功能的类别(并由此而找到Boolean 位数的类别),表明它执行一种确定型模型,而在[0,1]个案例中,我们发现,一个非三重的成形的正态的正值影响,也就是我们从Ban-PTI(ro)前和正统)的变的物理结构中,我们发现它会将进入了另一个的变的变的机。