The Lov\'{a}sz Local Lemma (LLL) is a keystone principle in probability theory, guaranteeing the existence of configurations which avoid a collection $\mathcal B$ of "bad" events which are mostly independent and have low probability. In its simplest "symmetric" form, it asserts that whenever a bad-event has probability $p$ and affects at most $d$ bad-events, and $e p d < 1$, then a configuration avoiding all $\mathcal B$ exists. A seminal algorithm of Moser & Tardos (2010) gives nearly-automatic randomized algorithms for most constructions based on the LLL. However, deterministic algorithms have lagged behind. We address three specific shortcomings of the prior deterministic algorithms. First, our algorithm applies to the LLL criterion of Shearer (1985); this is more powerful than alternate LLL criteria and also removes a number of nuisance parameters and leads to cleaner and more legible bounds. Second, we provide parallel algorithms with much greater flexibility in the functional form of of the bad-events. Third, we provide a derandomized version of the MT-distribution, that is, the distribution of the variables at the termination of the MT algorithm. We show applications to non-repetitive vertex coloring, independent transversals, strong coloring, and other problems. These give deterministic algorithms which essentially match the best previous randomized sequential and parallel algorithms.
翻译:Lov\' {a} 本地 Lemma (LLLL) 是概率理论中的关键原则, 保证存在避免“ 坏” 事件收集 $mathcal B$ 的配置, 这些“ 坏” 事件大多是独立的, 概率低。 以简单最简单的“ 对称” 形式, 它声称, 当坏事件有概率 $p$ 并影响最多达美元坏事件时, 并且 $e p < 1 美元, 然后就存在一个避免所有 $mathcal B$ 的配置。 Moser & Tardos 的随机算法( 2010) 为基于 LLL 的多数建筑提供了近乎自动的随机算法。 然而, 确定性算法已经落后了。 首先, 我们的算法会适用于LLL 标准中最多达1美元坏( 1985) ; 这比其他 LLL 标准更强大, 还会消除一些讨厌的参数, 并导致更清洁和易理解的逻辑框。 其次, 我们提供的平行算法的平行算算法, 其功能形式更灵活得多, 。