Li et al. in [Inf. Process. Lett. 77 (2001) 35--41] proposed the shuffle cube $SQ_{n}$ as an attractive interconnection network topology for massive parallel and distributed systems. By far, symmetric properties of the shuffle cube remains unknown. In this paper, we show that $SQ_{n}$ is not vertex-transitive for all $n>2$, which is not an appealing property in interconnection networks. To overcome this limitation, two novel vertex-transitive variants of the shuffle-cube, namely simplified shuffle-cube $SSQ_{n}$ and balanced shuffle cube $BSQ_{n}$ are introduced. Then, routing algorithms of $SSQ_{n}$ and $BSQ_{n}$ for all $n>2$ are given respectively. Furthermore, we show that both $SSQ_{n}$ and $BSQ_{n}$ possess Hamiltonian cycle embedding for all $n>2$. Finally, as a by-product, we mend a flaw in the Property 3 in [IEEE Trans. Comput. 46 (1997) 484--490].
翻译:在[Inf. process. Lett. Lett. Lett. Lett. Lett. Lett. (2001) 35-41中,李等人在[Inf. process. Lett. Lett. Lett. Lett. (2001) 35-41 中提议将洗牌立方体作为大规模平行和分布式系统具有吸引力的互联网络表层。 到目前为止,洗牌立方体的对称属性仍然不为人所知。 在本文中,我们显示$S ⁇ n} $不是所有美元>2的顶端转移,这在互联网络中并不是一个吸引人的属性。为了克服这一限制,洗牌堆的两个全新的顶端转换变体,即简化洗牌-立方 $SS_n} 和平衡的洗牌立方 $BUS_n} 。然后,我们分别给出了所有美元>2美元的轮转算法。此外,我们还显示, $SSn} 美元和 $BS%n} 都拥有汉密尔顿周期内所有 $>2美元。 最后,作为副产品,我们在[IEE. 449] (1997) 中纠正了财产3号中的缺陷。