In this paper, we introduce a novel non-linear activation function that spontaneously induces class-compactness and regularization in the embedding space of neural networks. The function is dubbed DOME for Difference Of Mirrored Exponential terms. The basic form of the function can replace the sigmoid or the hyperbolic tangent functions as an output activation function for binary classification problems. The function can also be extended to the case of multi-class classification, and used as an alternative to the standard softmax function. It can also be further generalized to take more flexible shapes suitable for intermediate layers of a network. In this version of the paper, we only introduce the concept. In a subsequent version, experimental evaluation will be added.


翻译:在本文中, 我们引入了一个新的非线性激活功能, 它自发在神经网络的嵌入空间中诱发类的相容性和正规化。 函数被称为 DOME, 用于镜像实验术语的差异 。 该函数的基本形式可以取代类像或双曲正切函数, 作为二进制分类问题的输出激活功能 。 该功能也可以扩展至多级分类, 并用作标准软体功能的替代。 还可以进一步推广到更灵活的形状, 以适合网络中间层 。 在本文的版本中, 我们只引入这个概念 。 在随后的版本中, 实验性评估将被添加 。

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
48+阅读 · 2021年11月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
0+阅读 · 2021年11月22日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月20日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员