Sparse sensor networks in weather and ocean modeling observe only a small fraction of the system state, which destabilizes standard nudging-based data assimilation. We introduce Interpolated Discrepancy Data Assimilation (IDDA), which modifies how discrepancies enter the governing equations. Rather than adding observations as a forcing term alone, IDDA also adjusts the nonlinear operator using interpolated observational information. This structural change suppresses error amplification when nonlinear effects dominate. We prove exponential convergence under explicit conditions linking error decay to observation spacing, nudging strength, and diffusion coefficient. The key requirement establishes bounds on nudging strength relative to observation spacing and diffusion, giving practitioners a clear operating window. When observations resolve the relevant scales, error decays at a user-specified rate. Critically, the error bound scales with the square of observation spacing rather than through hard-to-estimate nonlinear growth rates. We validate IDDA on Burgers flow, Kuramoto-Sivashinsky dynamics, and two-dimensional Navier-Stokes turbulence. Across these tests, IDDA reaches target accuracy faster than standard interpolated nudging, remains stable in chaotic regimes, avoids non-monotone transients, and requires minimal parameter tuning. Because IDDA uses standard explicit time integration, it fits readily into existing simulation pipelines without specialized solvers. These properties make IDDA a practical upgrade for operational systems constrained by sparse sensor coverage.


翻译:天气与海洋建模中的稀疏传感器网络仅能观测系统状态的一小部分,这会破坏标准基于松弛的数据同化稳定性。本文提出插值差异数据同化方法,该方法通过调整观测差异进入控制方程的方式实现改进。IDDA不仅将观测数据作为强迫项引入,还利用插值后的观测信息调整非线性算子。这种结构变化能有效抑制非线性效应主导时的误差放大。我们证明了在明确关联误差衰减与观测间距、松弛强度及扩散系数的条件下,系统具有指数收敛性。核心要求在于建立松弛强度相对于观测间距与扩散系数的界限,为实际应用提供清晰的操作区间。当观测数据能解析相关尺度时,误差将以用户指定的速率衰减。关键之处在于,误差界限与观测间距的平方成正比,而非依赖于难以估计的非线性增长率。我们在Burgers流动、Kuramoto-Sivashinsky动力学及二维Navier-Stokes湍流模型上验证了IDDA的有效性。系列测试表明,IDDA比标准插值松弛方法更快达到目标精度,在混沌区域保持稳定,避免非单调瞬态过程,且需极少参数调优。由于IDDA采用标准显式时间积分方案,可直接嵌入现有仿真流程而无需专用求解器。这些特性使得IDDA成为受稀疏传感器覆盖限制的业务化系统的实用升级方案。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员