Empirical risk minimization is a standard principle for choosing algorithms in learning theory. In this paper we study the properties of empirical risk minimization for time series. The analysis is carried out in a general framework that covers different types of forecasting applications encountered in the literature. We are concerned with 1-step-ahead prediction of a univariate time series generated by a parameter-driven process. A class of recursive algorithms is available to forecast the time series. The algorithms are recursive in the sense that the forecast produced in a given period is a function of the lagged values of the forecast and of the time series. The relationship between the generating mechanism of the time series and the class of algorithms is unspecified. Our main result establishes that the algorithm chosen by empirical risk minimization achieves asymptotically the optimal predictive performance that is attainable within the class of algorithms.


翻译:经验风险最小化是学习理论中选择算法的一项标准原则。 在本文中,我们研究了时间序列实验风险最小化的特性。 分析是在涵盖文献中遇到的不同类型预测应用的一般框架内进行的。 我们关心的是对参数驱动过程产生的单轨时间序列的一步前预测。 有一类循环算法可用于预测时间序列。 这些算法是循环的,因为特定期间产生的预测是预测和时间序列滞后值的函数。 时间序列生成机制与算法类别之间的关系没有说明。 我们的主要结果证明,通过实验风险最小化选择的算法在逻辑类别中可以实现的最佳预测性表现是随机的。

0
下载
关闭预览

相关内容

经验风险最小化(ERM)是统计学习理论中的一个原则,它定义了一系列学习算法,并用于给出其性能的理论界限。经验风险最小化的策略认为,经验风险最小的模型是最优的模型。根据这一策略,按照经验风险最小化求最优模型就是求解最优化问题。
专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
11+阅读 · 2021年7月4日
专知会员服务
25+阅读 · 2021年4月2日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员