We develop a Bayesian non-parametric quantile panel regression model. Within each quantile, the response function is a convex combination of a linear model and a non-linear function, which we approximate using Bayesian Additive Regression Trees (BART). Cross-sectional information at the pth quantile is captured through a conditionally heteroscedastic latent factor. The non-parametric feature of our model enhances flexibility, while the panel feature, by exploiting cross-country information, increases the number of observations in the tails. We develop Bayesian Markov chain Monte Carlo (MCMC) methods for estimation and forecasting with our quantile factor BART model (QF-BART), and apply them to study growth at risk dynamics in a panel of 11 advanced economies.
翻译:我们开发了一种巴伊西亚非参数四分位数板回归模型。 在每一个四分位数中,反应功能是一个线性模型和非线性函数的组合,我们大概使用巴伊西亚的Additive回归树(BART)来进行估计和预测。pth四分位数的跨部门信息是通过一个有条件的超摄氏性潜伏系数来捕捉的。我们模型的非参数增加了灵活性,而小组特征通过利用跨国家信息增加了尾部的观测次数。我们开发了巴伊西亚的Markov链Monte Carlo(MCMC)方法,与我们的四分位系数 BART(QF-BART)模型(QF-BART)一起进行估算和预测,并运用这些方法研究11个发达经济体小组的风险动态。