We investigate the benefits of feature selection, nonlinear modelling and online learning when forecasting financial time series. We combine sequential updating with continual learning, specifically transfer learning. We perform feature representation transfer through clustering algorithms that determine the analytical structure of radial basis function networks we construct. These networks achieve lower mean-square prediction errors than kernel ridge regression models, which arbitrarily use all training vectors as prototypes. We also demonstrate quantitative procedures to determine the very structure of the networks. Finally, we conduct experiments on the log-returns of financial time series and show that these online transfer learning models outperform a random-walk baseline. In contrast, the offline learning models struggle to do so.
翻译:在预测财务时间序列时,我们调查地物选择、非线性建模和在线学习的好处。我们将连续更新与持续学习,特别是转移学习相结合。我们通过组合算法进行特征代表转换,这些算法决定了我们所建的辐射基功能网络的分析结构。这些网络的平均值预测错误低于内核脊回归模型,后者任意使用所有培训矢量的模型作为原型。我们还展示了确定网络结构本身的量化程序。最后,我们进行了财务时间序列日志回报实验,并显示这些在线传输学习模型比随机行走基线要好。相比之下,离线学习模型却努力这样做。