Given a probability measure $\mu$ over ${\mathbb R}^n$, it is often useful to approximate it by the convex combination of a small number of probability measures, such that each component is close to a product measure. Recently, Ronen Eldan used a stochastic localization argument to prove a general decomposition result of this type. In Eldan's theorem, the `number of components' is characterized by the entropy of the mixture, and `closeness to product' is characterized by the covariance matrix of each component. We present an elementary proof of Eldan's theorem which makes use of an information theory (or estimation theory) interpretation. The proof is analogous to the one of an earlier decomposition result known as the `pinning lemma.'
翻译:根据对美元=mathbb R ⁇ n$的概率度量 $\ mu$以上,以少量概率度量的混凝土组合来将其相近,往往有用,因为每个成分都接近于产品量度。最近,Ronen Eldan使用一个随机本地化参数来证明这种类型的一般分解结果。在Eldan的理论中,“成分数量”以混合物的酶为特征,“与产品的距离”以每个成分的共变矩阵为特征。我们提供了Eldan理论的基本证据,该理论使用了信息理论(或估计理论)的解释。该证据类似于早期的分解结果,即“发光的列程 ” 。