Blur was naturally analyzed in the frequency domain, by estimating the latent sharp image and the blur kernel given a blurry image. Recent progress on image deblurring always designs end-to-end architectures and aims at learning the difference between blurry and sharp image pairs from pixel-level, which inevitably overlooks the importance of blur kernels. This paper reveals an intriguing phenomenon that simply applying ReLU operation on the frequency domain of a blur image followed by inverse Fourier transform, i.e., frequency selection, provides faithful information about the blur pattern (e.g., the blur direction and blur level, implicitly shows the kernel pattern). Based on this observation, we attempt to leverage kernel-level information for image deblurring networks by inserting Fourier transform, ReLU operation, and inverse Fourier transform to the standard ResBlock. 1x1 convolution is further added to let the network modulate flexible thresholds for frequency selection. We term our newly built block as Res FFT-ReLU Block, which takes advantages of both kernel-level and pixel-level features via learning frequency-spatial dual-domain representations. Extensive experiments are conducted to acquire a thorough analysis on the insights of the method. Moreover, after plugging the proposed block into NAFNet, we can achieve 33.85 dB in PSNR on GoPro dataset. Our method noticeably improves backbone architectures without introducing many parameters, while maintaining low computational complexity. Code is available at https://github.com/DeepMed-Lab/DeepRFT-AAAI2023.


翻译:在频率域中自然地分析了模糊度, 其方法是估算隐性锐利图像和模糊内核的模糊图像。 图像模糊度最近的进展总是设计端对端结构, 目的是了解像素级的模糊度和锐利图像配对之间的差别, 这不可避免地忽略了模糊内核的重要性。 本文揭示了一个令人感兴趣的现象, 仅仅在模糊图像的频率域上应用 ReLU 操作, 之后是 Fourier 的反方向变换, 即, 频率选择, 提供关于模糊模式的忠实信息( 例如, 模糊方向和模糊程度, 含蓄显示内核结构的图案模式 ) 。 基于此观察, 我们试图通过插入 Fourier 变换, RELU 操作, 和 Fourier 变换到标准 ResBlocklock。 1x1 Convolution 进一步添加到网络调制弹性调频度阈值阈值阈值阈值阈值 。 我们称我们新建的低基块保持为 Res FFT- RELUD 级变校程/ 校正 级 级 级 级 校正级 校正级 校正 校正 校正 校正 校正 级 校正 校正 校正 校正 校程 校程 校对 校内级 校对 校内级 校对 校程 级 校对 校对 校对 校对 校对 校对 校对 校对 校程 校程 校对 校对 校程 校对 的校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对 校对

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
15+阅读 · 2021年7月14日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员