We show that the Riemannian gradient descent algorithm on the low-rank matrix manifold almost surely escapes some spurious critical points on the boundary of the manifold. Given that the low-rank matrix manifold is an incomplete set, this result is the first to overcome this difficulty and partially justify the global use of the Riemannian gradient descent on the manifold. The spurious critical points are some rank-deficient matrices that capture only part of the SVD components of the ground truth. They exhibit very singular behavior and evade the classical analysis of strict saddle points. We show that using the dynamical low-rank approximation and a rescaled gradient flow, some of the spurious critical points can be converted to classical strict saddle points, which leads to the desired result. Numerical experiments are provided to support our theoretical findings.
翻译:我们发现,在低位矩阵中,里曼尼梯度梯度梯度梯度运算法几乎肯定逃脱了多位数边界上的一些虚假临界点。 鉴于低位矩阵元件是一个不完整的组合,这一结果首先克服了这一困难,并部分地证明全球使用里曼尼梯度梯度梯度梯度梯度梯度运算法是合理的。 虚假临界点是某些低级梯度矩阵,它只捕捉到地面真理中SVD组成部分的一部分。 它们表现出非常奇特的行为,并回避了对严格马鞍点的经典分析。 我们显示,利用动态低位近似和重新标定梯度流,一些虚假临界点可以转换为典型的严格马鞍点,从而实现预期的结果。 提供了数量实验来支持我们的理论结论。