The problem of statistical inference for regression coefficients in a high-dimensional single-index model is considered. Under elliptical symmetry, the single index model can be reformulated as a proxy linear model whose regression parameter is identifiable. We construct estimates of the regression coefficients of interest that are similar to the debiased lasso estimates in the standard linear model and exhibit similar properties: root-n-consistency and asymptotic normality. The procedure completely bypasses the estimation of the unknown link function, which can be extremely challenging depending on the underlying structure of the problem. Furthermore, under Gaussianity, we propose more efficient estimates of the coefficients by expanding the link function in the Hermite polynomial basis. Finally, we illustrate our approach via carefully designed simulation experiments.
翻译:在高维单一指数模型中回归系数的统计推论问题得到了考虑。在椭圆对称法下,单一指数模型可以重塑为可识别回归参数的代理线性模型。我们构建了与标准线性模型中偏差弧索估计值类似的相关回归系数估计数,并显示出类似的特性:根一致性和无症状常态。该程序完全绕过了对未知联系函数的估计,而根据问题的基本结构,该函数可能极具挑战性。此外,在高斯尼特下,我们通过扩大Hermite 多边基点的联系功能,提出了更高效的系数估计数。最后,我们通过精心设计的模拟实验来说明我们的方法。