Given a single RGB panorama, the goal of 3D layout reconstruction is to estimate the room layout by predicting the corners, floor boundary, and ceiling boundary. A common approach has been to use standard convolutional networks to predict the corners and boundaries, followed by post-processing to generate the 3D layout. However, the space-varying distortions in panoramic images are not compatible with the translational equivariance property of standard convolutions, thus degrading performance. Instead, we propose to use spherical convolutions. The resulting network, which we call OmniLayout performs convolutions directly on the sphere surface, sampling according to inverse equirectangular projection and hence invariant to equirectangular distortions. Using a new evaluation metric, we show that our network reduces the error in the heavily distorted regions (near the poles) by approx 25 % when compared to standard convolutional networks. Experimental results show that OmniLayout outperforms the state-of-the-art by approx 4% on two different benchmark datasets (PanoContext and Stanford 2D-3D). Code is available at https://github.com/rshivansh/OmniLayout.
翻译:在单一 RGB 全景范围内, 3D 版面重建的目标是通过预测角、 地面边界和天花板边界来估计房间布局。 一个共同的方法是使用标准变动网络来预测角和边界, 之后是后处理生成 3D 版面。 然而, 全景图像中的空间变化扭曲与标准卷动的翻译等值属性不兼容, 从而降低性能 。 相反, 我们提议使用球状变换。 由此形成的网络, 我们称之为 OmniLayout, 直接在球表面进行连动, 按照反正方形投影进行取样, 从而对角和边界进行变异性, 生成 3D 版面布局。 我们使用新的评价指标显示, 我们的网络将严重扭曲区域( 靠近电线杆) 的错误减少约25% 。 实验结果显示, OmniLayot 在两个不同的基准数据集( PanoConform/ Dastom) 上, 4 % 。 (Pancoroprox/ Lagustom/ Dustom) 。