The amount and quality of datasets and tools available in the research field of hand pose and shape estimation act as evidence to the significant progress that has been made. We find that there is still room for improvement in both fronts, and even beyond. Even the datasets of the highest quality, reported to date, have shortcomings in annotation. There are tools in the literature that can assist in that direction and yet they have not been considered, so far. To demonstrate how these gaps can be bridged, we employ such a publicly available, multi-camera dataset of hands (InterHand2.6M), and perform effective image-based refinement to improve on the imperfect ground truth annotations, yielding a better dataset. The image-based refinement is achieved through raytracing, a method that has not been employed so far to relevant problems and is hereby shown to be superior to the approximative alternatives that have been employed in the past. To tackle the lack of reliable ground truth, we resort to realistic synthetic data, to show that the improvement we induce is indeed significant, qualitatively, and quantitatively, too.


翻译:在手表和形状估计研究领域现有的数据集和工具的数量和质量是已经取得的重大进展的证据。我们发现,在这两个方面甚至更远的方面仍有改进的余地。即使是迄今所报告的质量最高的数据集,在说明方面也有缺点。文献中有一些工具可以帮助朝这个方向前进,但迄今尚未予以考虑。为了表明如何弥合这些差距,我们使用这种公开的、多镜头的手数据集(InterHand2.6M),并进行有效的图像改进,以改进不完善的地面真相说明,产生更好的数据集。基于图像的改进是通过对相关问题的追踪来实现的,这种方法远未被使用,因此表明优于过去使用的近似替代方法。为了解决缺乏可靠地面真相的问题,我们采用现实的合成数据,以表明我们带来的改进确实显著,质量和数量上也是显著的。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
3+阅读 · 2018年3月22日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员