The Pitman-Yor process is a nonparametric species sampling prior with number of different species of the order of $n^\sigma$ for some $\sigma>0$. In case of an atomless true distribution, the asymptotic distribution of the posterior of the Pitman-Yor process was known but typically inconsistent. In this paper, we extend this result into a general theorem for arbitrary true distributions. For discrete distributions the posterior is consistent, but it turns out that there can be a bias which does not converge to zero at the $\sqrt{n}$ rate. We propose a bias correction and show that after correcting for the bias, the posterior distribution will be asymptotically normal. Without the bias correction, the coverage of the credible sets can be arbitrarily low, and we illustrate this finding with simulations where we compare the coverage of corrected and uncorrected credible sets.
翻译:Pitman- Yor 过程是一个非参数性物种取样过程, 之前有不同物种数量, 依次为 $@sigma$, 约 $\ sigma>0 。 在无原子真实分布的情况下, Pitman- Yor 过程的后端分布是已知的, 但通常不一致 。 在本文中, 我们将此结果扩展为任意真实分布的一般理论。 对于离散分布, 后端分布是一致的, 但结果显示, 可能有偏差, 按 $\sqrt{n} 的速率不至零。 我们建议纠正偏差, 并显示在纠正偏差后, 后端分布将是平时正常的。 没有偏差校正, 可信的数据集的覆盖范围可以任意地降低, 我们用模拟来比较校正和不校正的可信数据集的覆盖范围, 我们用模拟来说明这一结果 。