One of the ultimate goals of Artificial Intelligence is to learn generalised and human-interpretable knowledge from raw data. Neuro-symbolic reasoning approaches partly tackle this problem by improving the training of a neural network using a manually engineered symbolic knowledge base. In the case where symbolic knowledge is learned from raw data, this knowledge lacks the expressivity required to solve complex problems. In this paper, we introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a neural network to extract latent concepts from raw data, whilst learning symbolic knowledge that solves complex problems, defined in terms of these latent concepts. The novelty of our approach is a method for biasing a symbolic learner to learn improved knowledge, based on the in-training performance of both neural and symbolic components. We evaluate NSIL on two problem domains that require learning knowledge with different levels of complexity, and demonstrate that NSIL learns knowledge that is not possible to learn with other neuro-symbolic systems, whilst outperforming baseline models in terms of accuracy and data efficiency.
翻译:人工智能的终极目标之一是从原始数据中学习一般和人类解释的知识。神经 -- -- 顺理成章的推理方法通过使用人工设计的象征性知识库改进神经网络的培训来部分解决这一问题。在从原始数据中学习象征性知识的情况下,这种知识缺乏解决复杂问题所需的明确性。在本文中,我们引入神经 -- -- 双向感应学习者(NSIL)这一方法,该方法培训神经网络,从原始数据中提取潜在概念,同时学习解决这些潜在概念中定义的复杂问题的象征性知识。我们的方法的新颖性是一种基于神经和象征性组成部分在培训中的绩效而偏向于学习改进知识的象征性学习者的一种方法。我们评价国家神经 -- -- 双向感应力学的两个问题领域,这需要学习不同程度的复杂知识,并表明国家神经 -- -- 感应力学会无法与其他神经 -- -- 论论系统学习的知识,同时在准确性和数据效率方面优劣的基线模型。