This paper studies a large unitarily invariant system (LUIS) involving a unitarily invariant sensing matrix, an arbitrary signal distribution, and forward error control (FEC) coding. We develop a universal Gram-Schmidt orthogonalization for orthogonal approximate message passing (OAMP). Numerous area properties are established based on the state evolution and minimum mean squared error (MMSE) property of OAMP in an un-coded LUIS. As a byproduct, we provide an alternative derivation for the constrained capacity of a LUIS. Under the assumption that the state evolution for OAMP is correct for the coded system, the achievable rate of OAMP is analyzed. We prove that OAMP achieves the constrained capacity of the LUIS with an arbitrary signal distribution provided that a matching condition is satisfied. Meanwhile, we elaborate a capacity-achieving coding principle for LUIS, based on which irregular low-density parity-check (LDPC) codes are optimized for binary signaling in the numerical results. We show that OAMP with the optimized codes has significant performance improvement over the un-optimized ones and the well-known Turbo linear MMSE algorithm. For quadrature phase-shift keying (QPSK) modulation, capacity-approaching bit error rate (BER) performances are observed under various channel conditions.
翻译:本文研究一个庞大的单体异变系统(LUIS),涉及一个单体异变感矩阵、一个任意的信号分布和前方错误控制(FEC)编码。我们为正方略传递信息开发一个通用的Gram-Smidt orthoonal化系统(OAMP ) 。许多区域属性是根据OAMP在未经编码的LUIS中的国家演变和最小平均正方差(MMS ) 属性建立的。作为一个副产品,我们为LUIS的受限能力提供了替代推导。根据假设OAMP的状态演变对编码系统来说是正确的,对OAMP的可实现率进行了分析。我们证明OAMP以任意信号分布的方式实现了LUIS的受限能力,条件是满足了匹配条件。与此同时,我们为OAMP为LUIS制定了一个能力达标的编码原则,根据这一原则,在数字结果中,不定期的低密度对等值检查(LPC)为二元信号的优化。我们显示OMP-MP在最高水平的MBIS升级的轨道能力下有显著的业绩改进。