We propose a novel combinatorial inference framework to conduct general uncertainty quantification in ranking problems. We consider the widely adopted Bradley-Terry-Luce (BTL) model, where each item is assigned a positive preference score that determines the Bernoulli distributions of pairwise comparisons' outcomes. Our proposed method aims to infer general ranking properties of the BTL model. The general ranking properties include the "local" properties such as if an item is preferred over another and the "global" properties such as if an item is among the top $K$-ranked items. We further generalize our inferential framework to multiple testing problems where we control the false discovery rate (FDR), and apply the method to infer the top-$K$ ranked items. We also derive the information-theoretic lower bound to justify the minimax optimality of the proposed method. We conduct extensive numerical studies using both synthetic and real datasets to back up our theory.
翻译:我们提出一个新的组合推论框架,以对排名问题进行一般不确定性的量化。 我们认为广泛采用的布拉德利-泰瑞-卢斯(BTL)模式(BTL)模式(BTL)模式(BTL),其中每个项目被分配一个积极的优先评分,决定伯努利对双向比较结果的分布。我们建议的方法旨在推断BTL模式的一般等级属性。一般排序属性包括“本地”属性,如项目优于另一个项目,以及“全球”属性,如项目属于最高排序项目之一。我们进一步将我们的推论框架概括为我们控制虚假发现率(FDR)的多重测试问题,并采用方法来推算排名最高的-K$的项目。我们还从中得出较低的信息理论约束,以证明拟议方法的微量最佳性。我们利用合成和真实数据集进行广泛的数字研究,以支持我们的理论。