The Arnold-Winther element successfully discretizes the Hellinger-Reissner variational formulation of linear elasticity; its development was one of the key early breakthroughs of the finite element exterior calculus. Despite its great utility, it is not available in standard finite element software, because its degrees of freedom are not preserved under the standard Piola push-forward. In this work we apply the novel transformation theory recently developed by Kirby [SMAI-JCM, 4:197-224, 2018] to devise the correct map for transforming the basis on a reference cell to a generic physical triangle. This enables the use of the Arnold-Winther elements, both conforming and nonconforming, in the widely-used Firedrake finite element software, composing with its advanced symbolic code generation and geometric multigrid functionality. Similar results also enable the correct transformation of the Mardal-Tai-Winther element for incompressible fluid flow. We present numerical results for both elements, verifying the correctness of our theory.
翻译:Arnold-Winther元素成功地将线性弹性的Hellinger-Reissner变异配方分解;它的开发是有限元素外部微积分的早期重大突破之一。 尽管它的功用很大, 标准限量元素软件中却找不到它, 因为它的自由度没有在标准Piola推向前的推动下得到保留。 在这项工作中, 我们应用了Kirby [SMAI-JCM, 4: 197-224, 2018] 最近开发的新型变异理论, 以设计正确的地图, 将参考单元格的基础转换为通用物理三角。 这使得Arnold- Winther元素能够使用广泛使用的Firedrake 限定元素软件, 既符合要求, 也不符合要求,, 以其先进的符号生成和几何多格功能构成。 类似的结果还使得Mardal- Tai- Winther元素的不可压缩液体流能进行正确转换。 我们为这两个元素提供了数字结果, 核查我们理论的正确性。