Data efficiency, despite being an attractive characteristic, is often challenging to measure and optimize for in task-oriented semantic parsing; unlike exact match, it can require both model- and domain-specific setups, which have, historically, varied widely across experiments. In our work, as a step towards providing a unified solution to data-efficiency-related questions, we introduce a four-stage protocol which gives an approximate measure of how much in-domain, "target" data a parser requires to achieve a certain quality bar. Specifically, our protocol consists of (1) sampling target subsets of different cardinalities, (2) fine-tuning parsers on each subset, (3) obtaining a smooth curve relating target subset (%) vs. exact match (%), and (4) referencing the curve to mine ad-hoc (target subset, exact match) points. We apply our protocol in two real-world case studies -- model generalizability and intent complexity -- illustrating its flexibility and applicability to practitioners in task-oriented semantic parsing.
翻译:尽管数据效率是一个有吸引力的特征,但在任务导向语义分析方面,衡量和优化数据效率往往具有挑战性;与精确匹配不同,它需要模型和具体域的设置,这些设置在历史上各试验之间差别很大。作为统一解决数据效率相关问题的一个步骤,我们在工作中引入了一个四阶段协议,以大致衡量一个分析分析器需要多少内域、“目标”数据才能达到某种质量条。具体地说,我们的协议包括:(1) 抽样目标组,不同主要区域,(2) 每个子集的微调分析器,(3) 获得一个与目标子集(%)和精确匹配(%)有关的平稳曲线,(4) 将曲线与矿(目标子集,精确匹配)点联系起来。我们在两个真实世界案例研究中应用了我们的协议 -- -- 模型通用性和意图复杂性 -- -- 说明其灵活性和对面向任务的语义解的从业者的适用性。