Recently, two approaches, fine-tuning large pre-trained language models and variational training, have attracted significant interests, separately, for semi-supervised end-to-end task-oriented dialog (TOD) systems. In this paper, we propose Variational Latent-State GPT model (VLS-GPT), which is the first to combine the strengths of the two approaches. Among many options of models, we propose the generative model and the inference model for variational learning of the end-to-end TOD system, both as auto-regressive language models based on GPT-2, which can be further trained over a mix of labeled and unlabeled dialog data in a semi-supervised manner. We develop the strategy of sampling-then-forward-computation, which successfully overcomes the memory explosion issue of using GPT in variational learning and speeds up training. Semi-supervised TOD experiments are conducted on two benchmark multi-domain datasets of different languages - MultiWOZ2.1 and CrossWOZ. VLS-GPT is shown to significantly outperform both supervised-only and semi-supervised baselines.


翻译:最近,两种方法,即微调大型预先培训的语言模型和变式培训,分别吸引了半监督端对端任务导向对话(TOD)系统的重大兴趣。在本文件中,我们提出了变式中端状态GPT模型(VLS-GPT),这是将两种方法的优势结合起来的第一个办法。在许多模式备选方案中,我们提出了归因模型和对端TOD系统变异学习的推导模型,两者都是以GPT-2为基础的自动反向语言模型,可以以半监督方式对标签和未标签的对话框数据组合进行进一步的培训。我们制定了取样前向前转换战略,成功地克服了在变式学习中使用GPT的记忆爆炸问题,加快了培训速度。在两种不同语言的基准多域数据集-MUDWOZ2.1和CrossWOZ-VLS-GPT实验中,显示VLS-GPT大大超越了监督和半超级基线。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【KDD2020-UCLA-微软】GPT-GNN:图神经网络的预训练
专知会员服务
62+阅读 · 2020年8月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年2月12日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
4+阅读 · 2018年9月6日
VIP会员
相关VIP内容
【KDD2020-UCLA-微软】GPT-GNN:图神经网络的预训练
专知会员服务
62+阅读 · 2020年8月19日
Top
微信扫码咨询专知VIP会员