Well-recommended methods of forming `confidence intervals' for a binomial proportion give interval estimates that do not actually meet the definition of a confidence interval, in that their coverages are sometimes lower than the nominal confidence level. The methods are favoured because their intervals have a shorter average length than the Clopper-Pearson (gold-standard) method, whose intervals really are confidence intervals. Comparison of such methods is tricky -- the best method should perhaps be the one that gives the shortest intervals (on average), but when is the coverage of a method so poor that it should not be classed as a means of forming confidence intervals? As the definition of a confidence interval is not being adhered to, another criterion for forming interval estimates for a binomial proportion is needed. In this paper we suggest a new criterion; methods which meet the criterion are said to yield $\textit{locally correct confidence intervals}$. We propose a method that yields such intervals and prove that its intervals have a shorter average length than those of any other method that meets the criterion. Compared with the Clopper-Pearson method, the proposed method gives intervals with an appreciably smaller average length. The mid-$p$ method also satisfies the new criterion and has its own optimality property.


翻译:对二进制比例形成`信任间隔'的好建议方法,提供实际不符合信任间隔定义的间隔估计,因为其覆盖面有时低于名义信任水平。这些方法优于其间的平均长度,因为它们的间隔比克洛佩普-皮尔逊(黄金标准)方法(黄金标准)的平均长度要短,其间隔期的间隔期实际上确实是信任间隔期的间隔期。这些方法的比较是棘手的 -- -- 最好的方法或许应该是提供最短间隔期(平均)的方法,但是如果方法的覆盖面太差,不应作为形成信任间隔期的一种手段进行分类?由于信任间隔期的定义没有得到遵守,因此需要为二进制比例形成间隔估计数的另一种标准。在本文件中,我们提出一个新的标准;据说符合标准的方法是产生美元(textit{局部正确信任间隔期}$。我们建议的一种方法可以得出这种间隔期,并证明其间隔期的平均长度比任何其他符合标准的方法短。与克洛佩-皮尔森方法相比,拟议方法的间隔期间隔期也具有最佳平均长度。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
65+阅读 · 2021年8月7日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
0+阅读 · 2021年8月29日
Arxiv
0+阅读 · 2021年8月27日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员