We present a new quantum algorithm for estimating the mean of a real-valued random variable obtained as the output of a quantum computation. Our estimator achieves a nearly-optimal quadratic speedup over the number of classical i.i.d. samples needed to estimate the mean of a heavy-tailed distribution with a sub-Gaussian error rate. This result subsumes (up to logarithmic factors) earlier works on the mean estimation problem that were not optimal for heavy-tailed distributions [BHMT02,BDGT11], or that require prior information on the variance [Hein02,Mon15,HM19]. As an application, we obtain new quantum algorithms for the $(\epsilon,\delta)$-approximation problem with an optimal dependence on the coefficient of variation of the input random variable.
翻译:我们提出了一个新的量子算法,用于估计以量子计算输出得出的实际估价随机变量的平均值。 我们的估测器在古典i. id. 数量上取得了近乎最佳的二次加速。 样本需要用来估计高尾分配的平均值, 加上一种亚加星误差率。 结果的子集( 加上对数因素) 先前对重尾分配不理想的平均值估算问题[ BHMT02, BDGT11], 或需要事先关于差异的信息[ Hein02, Mon15, HM19] 。 作为一种应用, 我们获得了美元( epsilon,\delta) $- 套用量算法问题的新量算法, 其最佳依赖输入随机变量的变异系数 。